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Abstract

Objectives: Conventional statistical modeling in criminology as-
sumes proper model specification. Very strong and unrebutted criti-
cisms have existed for decades. Some respond that although the crit-
icisms are correct, there is for observational data no alternative. In
this paper we provide an alternative.

Methods: We draw on work in econometrics and statistics from
several decades ago, updated with the most recent thinking to provide
a way to properly work with misspecified models.

Results: We show how asymptotically, unbiased regression esti-
mates can be obtained along with valid standard errors. Conventional
statistical inference can follow.

Conclusions: If one is prepared to work with explicit approxima-
tions of a “true” model, defensible analyses can be obtained. The
alternative is working with models about which all of the usual criti-
cisms hold.

1 Introduction

The generalized linear model and its extensions have long been a workhorse
for empirical research in criminology. The appeal is clear. The righthand side
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is a linear combination of regressors that is easy to interpret. Depending
on the disturbance distribution chosen, the response can be numerical or
categorical. Conventional statistical tests and confidence intervals can follow,
and the regression coe�cients can sometimes be given causal interpretation.
It is no surprise that two recent issues of Criminology (Volume 54, Issues 1
and 2, 2016) have 9 regression applications out of 10 research articles.

But the ease of use is deceptive. Powerful critiques of regression in prac-
tice have been widely available since at least the 1970s (e.g., Leamer, 1978,
Rubin, 1986; 2008; Freedman, 1987; 2004; Berk, 2003). David Freedman’s
excellent text on statistical models (2009) can be consulted for an unusually
cogent discussion. Moreover, there apparently has never been an e↵ective
rebuttal. Freedman (2009: 195) provides an illustrative list of comebacks he
received over the years to his criticisms of conventional regression analysis
practice.

We all know that. Nothing is perfect. Linearity has to be a good
first approximation. Log linearity has to be a good first approxi-
mation. The assumptions are reasonable. The assumptions don’t
matter. The assumptions are conservative. You can’t prove the
assumptions are wrong. The biases will cancel. We can model
for the biases. We’re only doing what everybody else does. Now
we use more sophisticated techniques. If we don’t do it, someone
else will. What would you do? The decision-maker has to be bet-
ter o↵ with us than without us. We all have mental models, not
using a model is still a model. The models are not totally useless.
You have to do the best you can with the data. You have to make
assumptions to make progress. You have to give the model the
benefit of the doubt. Where’s the harm?

Clearly, Freedman is having some fun while underscoring the lack of real
substance from those defending conventional regression practice. But he is
also missing an important message: conventional practice can recognize and
accept that requisite assumptions are not met and that the empirical results
derive from a misspecified model. Criminology craft lore in particular permits
working with approximations of the truth.

Yet, justifications of regression by approximation require far more than
craft lore. One needs a formal mathematical rationale. Such a rationale was
first o↵ered by White (1980a) and Freedman (1981). Accessible summaries
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followed (Angrist and Pischke, 2008; Berk et al., 2014b). Buja and his col-
leagues (2016) recently have developed important extensions. There can be
a formal justification for regression by approximation after all.

In this paper, we begin with a review of the criticisms of conventional
regression practice. For ease of exposition, we will use the linear regression
model, but the problems identified apply, with some modest alterations, to
the generalized linear model and multiple equation extensions such as hi-
erarchical linear models and structural equation models. We follow with a
discussion of how to justify and make sense of misspecified regression models.
The takeaway message is this: there will be many situations in which regres-
sion approximations can be appropriate and instructive, but some important
revisions of common interpretations are required.

2 Revisiting the Ubiquitous Linear Regres-

sion Model

We need to set the stage for regression by approximation with a brief review
of the traditional linear regression formulation followed by a short discussion
of some of its most telling criticisms. Conventional notation is used.

Y is an N ⇥ 1 numerical response variable, sometimes called a dependent
variable or an endogenous variable.1 N is the number of observations. There
is an N ⇥ (p + 1) “design matrix” X, where p is the number of predictors,
sometimes called regressors, independent variables, or exogenous variables.
A leading column of 1s is usually included in X for the intercept coe�cient.
Y is a random variable. In this formulation, the p predictors in X are fixed
variables. Whether predictors are fixed or random is not a technical detail,
and figures substantially in subsequent material.2

1This section draws heavily on Berk’s textbook on statistical learning (2016: Section
1.3).

2In this context, the predictors are treated as fixed variables if in new realizations of
the data, their values do not change. This is the approach in conventional regression. It
simplifies the mathematics, but at a substantial interpretative price; the regression results
can only be generalized to new observations produced by nature in the same fashion with
exactly the same x-values. In contrast, predictors are treated as random variables if in new
realizations of the data, their values changes in an unsystematic manner (e.g., through the
equivalent of random sampling). This complicates the mathematics, but one gains the
ability to generalize the regression results to new observations produced by nature in the
same fashion but with di↵erent x-values. To take a cartoon illustration, if a predictor is
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The value of Y for the ith case is realized from a linear function that
takes the form,

yi = �0 + �1x1i + �2x2i + . . .+ �pxpi + "i, (1)

where
"i ⇠ NIID(0, �2). (2)

Conventionally, �0 is the y-intercept associated with the leading column
of 1s. There are regression coe�cients �1, �2, . . . , �p, and a random pertur-
bation "i. One can say that for each case i, nature determines the values
of the predictors, multiplies each such value by its corresponding regression
coe�cient, adds these products, adds the value of the constant, and finally,
adds a random perturbation. Each perturbation, "i, is a random variable
realized as if drawn randomly and independently from a single distribution,
often assumed to be normal, with a mean of 0.0. Nature behaves as if she ap-
propriates a linear model, and Equations 1 and 2 are, therefore, a bonafide
theory of how some process works. Equations 1 and 2 are not merely a
statistical convenience.

The values of Y for each case i can be realized repeatedly because, given
X, its values will vary solely because of ". The predictor values are fixed.
For example, one can imagine that a given defendant could have a limitless
number of sentence lengths, solely because of the “noise” represented by "i.
Nothing else in nature’s linear combination would change: the defendant’s
prior record, conviction o↵ense, age, martial status, and so on. This is more
than a statistical formality. It is an essential part of the theory for how
sentences are determined.3

age, and the values in the dataset are ages 24, 25, 30, 31,32 and 35, these are the only ages
to which generalizations are permitted even if the true relationship is really linear. Should
one want to apply results to, say, a 26 year old, one has to alter the mathematics to allow
for realizations of ages that were not in the data. In other words, one has to allow for the
x-values to have been di↵erent. This introduces a new source of uncertainty not addressed
in the usual, fixed-x regression formulation. If one’s regression model is correctly specified,
the impact of the additional uncertainty can be in practice small. But as we shall see, it
matters a great deal if one wants to allow properly for model misspecification (Freedman,
1981).

3If on substantive grounds one allows for nature to set more than one value for any
given predictor and defendant, a temporal process may be implied. Then, there is system-
atic temporal variation to build into the regression equation. This can be done, but the
formulation is more complicated, requires that nature be still more cooperative, and for
the points to be made here, adds unnecessary complexity.

4



It is important to distinguish between the mean function and the distur-
bances (also called the residual error). The mean function is the expectation
of Equation 1.4 A conventional linear regression model is “first order correct”
when Equation 1 is literally what nature used to generate the means of Y
for di↵erent values of the predictors. To proceed in this manner the data
analyst (1) must know the predictors nature is using, (2) must know what
transformations, if any, nature applies to those predictors, (3) must know
that the predictors are linearly combined, and (4) has those predictors in
the dataset to be analyzed. In short, for the first order condition to be met,
the mean function specified in Equation 1 must be the mean function nature
used to generate Y . The only unknowns are the values of the y-intercept and
the regression coe�cients.

Equation 2 is the disturbance function. A conventional linear regression
model will be “second order correct” when the first order conditions are met
and when the “errors” behave exactly as Equation 2 specifies. That is, the
data analyst knows that each perturbation is realized independently of all
other perturbations and that each is realized from a single distribution that
has an expectation of 0.0. Because there is a single disturbance distribution,
the variance of that distribution is said to be “constant.” These are the
usual second order conditions. Sometimes the disturbance is also assumed to
be normal with variance �

2. When N is much larger than p, the normality
assumption is unnecessary.

Suppose that the first order conditions are met, and ordinary least squares
is applied to the data. Estimates of the slopes and y-intercept are then unbi-
ased estimates of the corresponding values that nature uses. When the first
order conditions and the second order conditions are met, the disturbance
variance can be estimated in an unbiased fashion using the residuals from the
realized data. Conventional confidence intervals and statistical tests properly
follow, and by the Gauss-Markov theorem, each estimated � has the smallest
possible sampling variation of any other linear estimator of nature’s regres-
sion parameters. A similar discussion applies to the entire generalized linear
model and its multi-equation extensions, although that reasoning depends

4The expectation is essentially the mean Equation 1 over a limitless number of indepen-
dent realizations of the data conditional on the x-values in the dataset. In the expectation,
the values of regression coe�cients are their means, and the value of the disturbance term
is 0.0. The left hand side is then the means of Y for di↵erent values of predictors in the
original dataset.
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on asymptotics.5

There is nothing in the first or second order conditions about causal infer-
ence because causal inference is an interpretative overlay. It is not a formal
feature of the regression model and depends conceptually on a potential out-
comes perspective first proposed by Neyman (1927) and extended by Rubin
(Rubin and Imbens, 2015). As Cook and Weisberg (1999:27) explain, the
goal of a regression analysis is to understand “as far as possible with the
available data how the conditional distribution of some response y varies
across subpopulations determined by the possible values of the predictor or
predictors.” Cause is nowhere to be found. For example, one might compare
for descriptive purposes the length of sentence given to 25 year old males,
convicted of aggravated assault, with two prior felony convictions to 25 year
old females, convicted of aggravated assault, with two prior felony convic-
tions. Perhaps the males’ distribution in the data has a larger mean and a
longer tail to the right. There is no need for a causal interpretation and in
any case, with observational data, causal inference can be very controversial
(Friedman, 1987; 2004). In short, a regression model does not have to be a
causal model.

3 Problems in Practice for Conventional Re-

gression

In order to obtain unbiased estimates of the linear regression parameters, the
first order conditions must be met; the mean function specified is the mean
function used by nature. If these conditions are not met, any formal justifica-
tion for estimation, confidence intervals, and statistical tests evaporates. In
order to obtain valid statistical tests and confidence intervals, the first order
conditions and the second order conditions must be met; the disturbances
must be generated by nature as independent draws from a single distribution
with a mean of 0.0.

5The term “asymptotics” in this context refers to the performance of regression esti-
mates (e.g., the regression coe�cients) when the number of observations increases without
limit. Often this mathematical exercise shows that estimation biases decrease with larger
sample sizes, and disappear with a limitless number of observations. Good asymptotic per-
formance can be a fallback position for statistical procedures whose estimates are otherwise
biased. Then, if the number of observations is far larger than the number of predictors,
estimation biases are likely to be small.
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One properly can proceed if the first order conditions are met even if the
second order condition of constant disturbance variance is violated. Halbert
White (1980b) provides valid, asymptotic standard errors when the distur-
bance variances are not constant (i.e., heteroscedasticity-consistent standard
errors). Valid confidence intervals and statistical tests can follow.6 How-
ever, sometimes these standard errors are characterized as “robust” which
perhaps has led criminologists to use them when they do not apply. For
example, they do not adjust properly for dependence between disturbances
and most assuredly do not correct for mean function misspecification.

These sorts of details matter because it is usually impossible to know
whether the regression model specified by the analyst is the means by which
the data were generated. A common fallback, therefore, is to claim that the
model specified is “close enough.” But there is no way to know what “close
enough” means. One requires the truth to quantify a model’s disparities from
the truth, and were the truth known, there would be no need to analyze any
data.

Nevertheless, three strategies often are used to address the “close enough”
requirement. First, sometimes researchers try to cover their bets by o↵ering
a suite of possible models. But, it is not clear what to make for this exercise.
Perhaps most important, even if a single model is designated at the best,
one cannot claim that the model chosen is properly specified. It may be
just the best of a bad lot. Moreover, there are di�cult conceptual and
mathematical problems inherent in the concept of “best.” For example, it
does not follow that a better fitting model is closer to the correct model.
One might be improving the fit by including predictors that are correlated
with the response variable, but not actually a feature of the true model. It is
also challenging to properly compare the di↵erent models in part because any
statistical tests or confidence intervals are only correct for the single correct
model, which is unknown. Even if that model happens to be among those
examined, there is no way to determine which one it is.

Second, there are a large number of regression diagnostics taking a variety
of forms including graphical procedures, statistical tests, and the comparative

6Other work by White (1980a) and others, to be addressed shortly, allows for asymp-
totically valid tests when the mean function is misspecified. But that work does not apply
to the conventional linear regression model. By “valid” one means that the probabilities
computed for statistical tests and confidence intervals, have the properties they are sup-
posed to have. For example, the 95% confidence interval really does cover the value of the
population parameter in 95% of possible realized datasets.
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performance of alternative model specifications (Weisberg, 2005: Chapters
9-10). These tools can sometimes identify problems with the linear model.
Most are designed to detect single di�culties in isolation when in practice,
there can be many di�culties at once. For example, is evidence of non-
constant variance a product of mean function misspecification, disturbances
generated from di↵erent distributions, or both? In addition, diagnostic tools
using statistical tests typically have weak statistical power (Freedman, 2009b:
193).

Compounding matters, when for model misspecification tests a null hy-
pothesis is not rejected, analysts commonly “accept” the null hypothesis as if
the model were correct (Goodman, 2016). In fact, there are e↵ectively a lim-
itless number of other null hypotheses that would also not be rejected. This
is sometimes called “the fallacy of accepting the null” (Rozeboom, 1960).7

Finally, even if some model misspecification is accurately identified, there
may be little guidance on how to fix it, especially within the limitation of the
data available, and trying to re-specify the model can introduce new sources
of bias. It is now well known that model selection and model estimation
undertaken on the same data (e.g., statistical tests for a set of nested models)
lead to biased estimates and/or incorrect statistical inference even if by some
good fortune the correct model is found (Leeb and Pötscher, 2005; 2006; 2008;
Berk et al., 2010; 2014).8

Third, when regression results make sense and are consistent with – or
at least not contradicted by – existing theory and past research, some argue
that the regression model must be reasonably close to right. Some go so far
as to claim that earlier findings have been replicated, and that the model
under consideration has been validated.

As a logical matter, these arguments about replicability do not parse.
An obvious complication is that the study protocols must be comparable. If
hot spots policing and community policing are both associated with crime

7For example, if the null hypothesis for a given regression coe�cient is 0.0, there will
almost always be many reasonable null values close to 0.0 that would also not be rejected.
And even a coe�cient value close to 0.0 can meaningfully change the model specification
and the estimated values of the other regression coe�cients. A predictor with a small
regression coe�cient may be strongly correlated with other predictors so that their esti-
mated regression coe�cients will vary substantially depending on whether that variable is
included in the regression.

8Model selection in some disciplines is called variable selection, feature selection, or
dimension reduction.
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reductions, one would be hard pressed to claim reproducibility (Ioannidis,
2014; Harris, 2012; Open Science Collaboration, 2015). The same reasoning
applies to studies using di↵erent regression models. And should the study
protocols be comparable, one may well be reproducing results that are in-
correct. Indeed, there is ample room within a claim of reproducibility to
replicate nonsense. The model under scrutiny and the previous models to
which comparisons are made may all be substantially wrong. Even many
wrongs don’t make a right.9

In summary, a close look at the requirements of conventional regression
reveal a standard that is extremely di�cult to meet. All statistical models
are wrong (Box, 1976), not just because statistical models are by design
simplifications, but because the formal requirements can be too strict for
real world practice. So what is a researcher to do? In the pages ahead,
we provide a more permissive formulation that comports better with how
quantitative research on criminology is actually done.

4 A Statistical Formulation for Misspecified

Regression Models

The conventional linear regression model requires that the data are realized
exactly as described in Equations 1 and 2. A more permissive formulation
allows each case to be realized independently from some joint probability
distribution and does not require the first order and second order conditions
essential for conventional linear regression.

4.1 A Finite Population Approach

One can get a grounded sense of what this means by thinking about a two-
dimensional histogram. A more technical and complete discussion follows.
As shown in Figure 1, there are two simulated variables X and Y that define

9These problems and more carry over to formal meta-analyses (Berk, 2007). For ex-
ample, the set of studies being summarize are not a probability sample of anything and
are not realized in an independent fashion. Indeed, one of the key features of the scientific
enterprise is that later studies build on early studies. As a result, all statistical tests and
confidence intervals are likely to be bogus. The one exception is when all of the studies
are randomized experiments, but then the inferential formulation is somewhat di↵erent.
Within that framework, one can have valid statistical inference.
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Figure 1: A Three-Dimensional Histogram of a Finite Population With Y

And X As The Variables

a plane. Sitting on that plane are bars representing the relative frequencies
of observations. The location of each bar is determined by a value of X and
a value of Y (in this case, binned for visualization purposes). The proportion
of cases contained within each bar can be approximately ascertained using
the color legend on the far right.

Figure 1 is a visual summary of a joint distribution for the two variablesX
and Y . One can think of the data shown in Figure 1 as a finite population, as
one might within a traditional random sampling framework. The population
shown in Figure 1 has means for Y and X, variances for Y and X and
a covariance between Y and X. These are the relevant moments of the
joint population distribution. The variables Y and X are fixed; they do not
change.

Suppose one had access to all of the population data shown in the his-
togram. Figure 2, is a birds eye view of Figure 1 and actually a scatter plot.
Y is by construction a cubic function of X, although there are population
residuals around the cubic function. The cubic mean function characterizes
the population conditional means of Y for di↵erent values of X and consti-
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Figure 2: A Two-Dimensional Histogram Looking Down on Figure 1

tutes the “true response surface.”10

Looking at Figure 2, a linear fit would less than ideal. Nevertheless,
suppose a population linear regression of Y on X was computed by ordinary
least squares. Clearly, the linear mean function is misspecified. What useful
information might it convey?

Figure 3 provides some answers in a conventional scatter plot format.
The blue circles are observations. (There is a lot of overprinting.) The green
line is the true population response surface composed of the true conditional
means. The red line is the best population linear approximation of those
true conditional means. In this simple example, the linear function captures
the positive monotonic association between X and Y . The slope represents
the average change in Y for a unit change in X over the range of x-values
in the population. Moreover, because the linear function is computed using
ordinary least squares, one properly can claim that the population linear
mean function is the best linear approximation of the true response surface.

Now imagine drawing a simple random sample from the population; the

10There is nothing special about the cubic function except its relative simplicity. We
could have used here virtually any nonlinear function, but the price would have been a
more di�cult exposition.
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Figure 3: A Population Scatter Plot with True Response Surface In Green
and Best Linear Approximation in Red
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data are generated by real random sampling. Even though Y and X are
fixed variables in the population, they are now random variables in the sam-
ple. Were a new random sample drawn, the sample values of both variables
would di↵er by chance. The data does not result from nature appropriat-
ing the linear model. Allowing predictors to be random variables requires a
fundamental reformulation of our estimation procedures.

We begin by abandoning the true response surface as the target of esti-
mation. The true response function is assumed to be unknown and certainly
not limited to a linear function. Adopting a prudent strategy, the data ana-
lyst wishes to estimate with ordinary least squares the population best linear
approximation.11 That is, the data analyst seeks an estimate of the red line
in Figure 3. What are the properties of such an estimate, given random X

and unknown true response surface that could well be nonlinear? To answer
that question, we must leave behind the finite population and begin a more
technical and abstract discussion.

4.2 Treating a Joint Probability Distribution as the

Population

We begin with a statistical abstraction from a joint empirical distribution.
There is now a population composed of variables Z in which the number of
observations is limitless. The population is described by a joint probability
distribution having usual sorts of parameters such as the mean and variance
for each variable.12 Because the number of observations is limitless, these
parameters are expectations. For example, the mean for a particular Z is
the expected value of that Z.

Within the joint probability distribution, there is no distinction between
predictors and responses. For the population variables Z, a researcher dis-
tinguishes between predictors X and responses Y. Some of the variables in Z

may be discarded because they are not relevant for the substantive or policy
issues at hand. These practitioner decisions have nothing to do with how the
data were generated.

11The framework to follow applies to any parametric approximation of the true response
surface, not just a linear approximation. But working with a linear function makes the
exposition much easier.

12There is a subtlety here. The variables in the joint probability distribution may well
be correlated. But those correlations have no role in how the data are generated.
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With the predictors and response determined, there is for these variables
a true response surface that is a feature of the joint probability distribution.
The true response surface is the set of conditional expectations of Y for the
predictors X and can be highly nonlinear. No particular functional form is
assumed and in practice, the functional form is unknown. Another feature of
the joint probability distribution is a best linear approximation of that true
response surface that is a least squares multiple regression of Y |X in high
dimensions of X.

2 4 6 8 10
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Y

Figure 4: Nonconstant Variability Caused By Working Model Misspecifica-
tion, A Nonlinear True Response Surface, and X Realized at Random

Figure 4 is much like Figure 3, but is meant to represent the joint prob-
ability distribution for Y and a one-dimensional X. The conditional distri-
butions Y |X are shown with solid blue bars. As before, the green line is the
true response surface, and the red line is the best linear approximation.

Even if the variability around each true conditional expectation happens
to be the same, the variability around the conditional expectations of the best
linear approximation will likely di↵er. For the fifth vertical slice (boxed), the
best linear approximation falls above the true response. Therefore, space
between the two lines represents specification error. Because X as realized is
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a random variable, the specification error is also random and gets folded into
the disturbance variability. For the second vertical slice (boxed), the linear
approximation falls below the true response surface. This is a specification
error in the other direction but because X as realized is a random variable,
it too is folded into the disturbance variability.

Across the entire range of X, specification error becomes part of the
disturbance variability except when the true response surface and the best
linear approximation have the same conditional expectation. Because the
size of the specification error varies, so does the resulting variability around
the best linear approximation. In short, the combination of a nonlinear true
response surface and a best linear approximation, coupled with a randomly
realized X, produces heteroscdasticity. This has estimation implications to
be addressed shortly.

In practice, some finite number of observations are independently realized
as the data to be analyzed. That is, the data are produced by a natural pro-
cess equivalent to random sampling. Suppose now that a researcher analyzing
such data takes as a working model a conventional linear regression. Accord-
ing to the working model, the conditional means over cases, µ, is assumed
to be related to X by µ = X�. Y is then X� + ". Because the form of true
response surface is unknown, there is no justification for treating the working
model as correctly specified. But the researcher can treat the working model
as a vehicle with which to estimate the best linear approximation of that
unknown, true response surface. The researcher forgoes trying to estimate
the true conditional means and settles for trying to estimate the best linear
approximation of that truth. Very little is given up because as noted earlier,
any working model will likely be misspecified if the true response surface is
the estimation target.

Immediately there are important benefits. There is no longer any model
misspecification because there is no such thing as omitted variables or incor-
rect functional forms. The estimation target is the best linear approximation
specified by the researcher’s working model, whatever that happens to be.
Working models can be more or less informative, but they cannot be more
of less incorrect. For a model to be more or less correct, a comparison to the
true model is required. In addition, because there is no longer such a thing
as model misspecification, there is no longer a need to examine regression
diagnostics with the hope of patching up the mean function. Regression di-
agnostics can play a role, but only to improve estimates of the best linear
approximation or perhaps suggest a di↵erent parametric approximation.
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Figure 5: Estimation Complications Because of Random X And A Nonlinear
True Response Surface

Unfortunately, estimation comes with complications. If as conventionally
done, X is treated as fixed, an estimate of the best linear approximation in
the population will be biased. Figure 5 shows why. The solid green line shows
the true response surface. The solid red line is the best linear approximation
in the population.

Suppose that in the sample, the distribution of X is skewed to the right.
This is illustrated by the cyan distribution at the bottom of figure. It follows
that low values of X will dominate the x-values in the sample. These are
shown by the cyan-filled circles. The estimate of the population best linear
approximation is shown by the cyan dashed line. Clearly, the slope is too
small.

Suppose that in the sample, the distribution of X is skewed to the left.
This is illustrated by the blue distribution at the bottom of the figure. It
follows that high values of X will dominate the x-values in the sample. These
are shown by the blue-filed circles. The estimate of the population best linear
approximation is shown by the blue dashed line. Clearly, the slope is too
large.

The technical point is that when, as conventionally done, X is treated as
fixed, and there is mean function misspecification, the distribution ofX in the
sample matters even when the best linear approximation is the estimation
target.13 The practical point is that when, as conventionally done, X is

13Skewness is not essential. All one requires is that potential distributions of X have
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treated as fixed, all of the usual estimation problems remain.
However, under our joint probability distribution formulation with obser-

vations independently realized, X is not fixed; X is a random variable. This
means that over realizations of the dataset, one will get to see x-values from
the full population distribution of X. Sometimes an estimated slope will be
too flat, and sometimes an estimated slope will be too steep, just a shown
in the figure. But over realizations of the dataset, the di↵erent slopes will
be averaged and asymptotically, an estimate of the best linear approxima-
tion will be unbiased. In finite samples of even modest size, the bias will be
small.14

In summary, the slope obtained from a given dataset can be interpreted
as an asymptotically unbiased estimate of the the average slope over the full
range of the unknown true response function. For any particular sample, the
average may be too flat or too steep, and there is no way to know which
or by how much. Nevertheless, in Figure 5 the estimate of the best linear
approximation accurately conveys that by and large the true relationship is
positive and monotonic.

The same reasoning can be applied when there is more than one predictor.
The main di↵erence is that each regression coe�cient is, as usual, adjusted
for its correlations with all other predictors; one has “partial” regression
coe�cients.

In addition, the best approximation can be the best nonlinear, parametric
approximation. This allows for convenient mean functions such as polyno-
mials. For example, in Figure 5, the approximation could be parabolic.

One might think that if the predictors are all categorical, there can be no
nonlinear true response surface, and the problems addressed would disappear.
This view is correct if for the true response surface, all of the categorical
predictors are included additively. But if there are interaction e↵ects as
products of any predictors, and if those interaction e↵ects are not included
in the working mean function, one again has a nonlinear true response surface
and a best linear approximation.

Finally, we come to proper estimates of the standard errors. The het-
eroscedasticy described earlier means that conventional standard errors for
the estimated regression coe�cients are not valid. It follows that the cor-

di↵erent expected values.
14The reliance on asymptotics is widespread in statistical and econometric applications.

For example, even if the mean function for a logistic regression is correct, estimates of the
regression coe�cients are only unbiased asymptotically.
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responding statistical tests and confidence intervals are also not valid. But
there are two readily available solutions. First, one can apply a nonpara-
metric bootstrap in which rows of the dataset are sampled at random with
replacement. This produces asymptotically valid standard error leading to
asymptotically valid statistical tests and confidence intervals (Freedman,
1981; McCarthy et al., 2016). Second, one can employ White’s “sandwich
estimator” to the same end (White, 1980a, Freedman, 1981). Both solutions
can be accessed in popular statistical packages or easily coded in program-
ming languages such as R.

4.3 Causal Inference

Working with misspecified regression models and observational data, even
within our framework, presents significant challenges for causal inference.
Perhaps most fundamentally, the working regression will probably not cor-
respond to the real world setting to which causal inferences are to be drawn.
Causal inferences are conventionally made from estimates of the true re-
sponse surface, not from an explicit approximation whose correspondence to
the truth is unknown.15

Still, with observational data, an estimate of the best linear approxima-
tion will usually be all one has to work from. Perhaps one can capitalize
on the common practice in randomized experiments of estimating an aver-
age treatment e↵ect (ATE).16 After all, the best linear approximation is an
average slope.

In randomized experiments, interventions are assigned, and the usual po-
tential outcome framework is easily applied (Rubin and Imbens, 2015). For
example, the standard model of treatment e↵ects in randomized experiments
allows each study unit to have its own pre-existing value for the response.
Then for each unit, the response value is shifted up or down additively by
some constant amount attributed to the intervention (Rosenbaum, 2002: Sec-
tion 2.5.3). An ATE averages over these pre-existing di↵erences to arrive at
the additive constant.

15The same di�culties arise if regression is replaced by matching.
16For groups, an ATE formally is the di↵erence between their two response variable

means. Whether that di↵erence can be interpreted as a causal e↵ect depends on the the
research design and in particular whether there is an intervention subject to manipulation.
This requirements is met in randomized experiments and strong quasi-experiments. It can
be very problematic in observational studies.
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The best linear approximation is a di↵erent kind of average. The best
linear approximation averages over slopes between pairs of observations that
will vary in their distance from one another. Therefore, each pair of obser-
vations is being subjected to di↵erent interventions – the “change in X” will
likely vary. And because the true response surface can be nonlinear, where
the x-values are located matters too – the “change in Y ” can di↵er for obser-
vations that are the same distance in X from one another. If one wishes to
treat the slopes between pairs of observations as causal e↵ects, the slope of
the best linear approximation is a weighted average of causal e↵ects.17 For
the conventional ATE, there is but one causal e↵ect somewhat obscured by
pre-existing di↵erences between study units.

In short, the best linear approximation is not a conventional tool for
causal inference. If conventional causal inference is a key study feature, one
must try to estimate the true response surface. Randomized experiments or
strong quasi-experiments are needed.

5 An Example

We now turn to an illustration of how the ideas discussed above can play out
in a real application. The application is relatively simple. A richer appli-
cation would require a relatively lengthy digression into substantive issues,
which for this paper would be a diversion.

Variation in prison sentences has long been studied and can be a contro-
versial policy issue. For example, the U.S. Sentencing Commission regularly
publishes reports of federal sentencing outcomes by features of o↵enders,
crimes and jurisdictions (http://www.ussc.gov). For illustrative purposes,
we consider the sentences of 500 inmates incarcerated in a state prison sys-
tem. They are a convenience sample from a recent year. The response
variable is the nominal length of the prison sentence given by a sentencing
judge.18 We will address empirically the possible role of gender and other
o↵ender features in the lengths of sentences imposed (Ste↵ensmeier et al.,
1993; Ulmer and Bradley, 2006; Starr, 2015)

There are two ways to think about the population to which inferences are

17A thorough discussion the weights are can found in Buja and his colleagues (2016:
Section 10). Perhaps the most important conclusion is that although the weights are
formally required, they further complicate how an average causal e↵ect is interpreted.

18Time actually served can di↵er, sometimes dramatically.
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to be made. There is the set of all inmates in that prison system for several
years around the time the data were collected. Although the inmates in the
study are not a random sample, one can view them as random realizations
from the social processes associated with prison sentences. There is no rea-
sonable evidence that over that interval, there were important changes in the
mix of inmates, relevant statutes, or courts’ administrative practices. These
inmates, therefore, would constitute a finite population of several hundred
thousand that could be described by a joint empirical distribution. It is a
relatively short conceptual step to imagine a limitless population of inmates
that could have been realized from the same social processes over the time
period of interest, described by a joint probability distribution. Because in
this example, the finite population is so large relative to the sample size,
either conception would in practice su�ce.

We emphasize that such reasoning depends on subject-matter knowledge,
and how well the reality corresponds to the formal statistical requirements
will be a matter of degree. However, sometimes data from the population
help. For example, if the prison system were able to provide for all cur-
rent inmates key summary statistics (e.g., the current distribution of prison
sentence lengths), comparisons could be made to the sample. Should such in-
formation be available over several years, more convincing comparisons could
be made. In this instance, we actually have many summary statistics for the
relevant population, and they correspond well to the summary statistics in
the sample of 500.

Perhaps more demanding is the requirement that the 500 observations
are realized independently. That too will be a matter of degree and would
depend on such factors as whether earlier sentences given to convicted of-
fenders significantly shape the sentences given to later convicted o↵enders in
a state that has advisory sentencing guidelines. That is, given the guideline
sentences, are the sentences realized independently?

In short, whether a dataset can be properly seen as a set of independently
realized observations from a joint probably distribution needs to be justified
on substantive grounds and will typically be a matter of degree. If the case
cannot be made, statistical inference is o↵ the table, and the analysis is
limited to description of the data on hand.

Table 1 shows the regression results. For each predictor, the first three
columns contain the usual ordinary least squares results. The last two
columns show the “sandwich” standard errors and the proper t-values. As-
terisks next to a t-value indicate that the p-value is less than .05 for a two
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Predictor Coe�cient Std. Err t-Value Sandwich Proper t-Value
Intercept 0.45 1.99 0.22 1.84 0.22
Violent Record 4.64 0.51 9.13* 0.55 8.43*
Sex O↵ender -1.15 1.17 -0.98 1.73 -0.66
Number of Prior Charges 0.01 0.02 0.67 0.02 0.67
First Arrest Age -0.20 0.05 -4.23* 0.06 -3.33*
Number of Prior Arrests -0.27 0.09 -3.02* 0.09 -3.00*
Gender 2.63 0.75 3.52* 0.50 5.26*
IQ -0.01 0.02 -0.61 0.02 -0.61
Age 0.26 0.03 7.99* 0.05 5.20*

Table 1: Regression Results for Nominal Prison Sentence with Proper “Sand-
wich” Standard Errors (N=500)

tailed test.
We have specified on purpose a model whose mean function is clearly

incorrect. For example, we do not include the crimes for which the o↵ender
was convicted despite requirements of the sentencing guidelines. The vari-
able “Violent Record” only indicates whether the conviction o↵ense and/or
other prior convictions were for violent crimes. There are also reasons to be-
lieve that some nonlinear relationships have been overlooked. For example,
age likely has a nonlinear relationship with sentence length. The working
regression provides estimates of the population best linear approximation of
the true response surface.

Consider first how one should interpret the results for a conventional
linear regression. One literally has in the regression coe�cients estimates
of the constants nature used when constructing the linear combination of
predictors responsible for average sentence length. One can generalize the
results to all o↵enders and settings in which nature proceeded in very same
way.

For five of the eight predictors, the conventional least squares regression
leads to a rejection of the usual null hypothesis of no linear association. If one
takes the tests at face value, one still has the linear machinery nature used,
but with some predictors that nature did not in fact employ. There might
be a very strong temptation to re-estimate of regression coe�cients for a
specification that did not include the predictors whose null hypothesis of 0.0
could not be rejected. But if the same data were used, the new coe�cients
will be estimated in a biased manner, and all subsequent statistical tests
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will be invalidated. This point was made earlier when “model selection” was
briefly addressed.

Of particular interest is that holding all else in the linear regression equa-
tion constant, being male is associated with an average increase of 2.63 years
in sentence length. In conventional terms, this is taken to be an unbiased
estimate of the true relationship between gender and sentence length, hold-
ing all possible confounders constant. Moreover, the increment of 2.63 years
can be an estimate of the average treatment e↵ect (ATE) of gender. If one
changed a convicted o↵ender’s gender from female to male, the sentence given
would be on the average 2.63 years longer.19 The signs and magnitudes of
the other “significant” coe�cients are consistent with expectations except for
the number of prior arrests, which has a negative association with sentence
length. Interpretations the other regression coe�cients would take much the
same form as the interpretation for gender.

Consider now the results from the perspective of a best linear approxi-
mation. Some of the sandwich standard errors di↵er substantially from the
conventional standard errors. In particular, the sandwich standard error for
gender is 0.50, and the conventional standard error is 0.75. Because the valid
standard error is about a third smaller, the 95% confidence interval around
the gender regression coe�cient is about a third smaller as well. The gender
t-value using the sandwich standard error is nearly 50% larger, but in either
case, the null hypothesis is easily rejected at the .05 level.

Getting the proper standard errors is largely a technical matter. More
challenging is how to interpret properly the regression coe�cients from the
linear approximation. The regression coe�cient for gender is again a good
illustration. The longer average sentence for men of 2.63 years represents an
association from a linear approximation of the unknown, true relationship.
It is not an unbiased estimate of the true relationship, but an asymptoti-
cally unbiased estimate from a linear approximation of the true relationship.
For the true relationship, there might be no association between sentence
length and gender, or it might be that women on the average receive longer
sentences. Moreover, one has only an association, not an estimated causal
e↵ect.20

19There are well-known interpretative problems treating gender as a cause because it
is not manipulable, but that is often overlooked when causal interpretations are provided
for regression results. Causal interpretations for race have the same problem (Berk, 2003:
Chapter 5).

20Language matters too. One must be careful about using verbs like “a↵ect,” “impact,”
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Nevertheless, if one were concerned about gender bias in sentencing, there
is evidence that holding constant the number of prior arrests, the age at first
arrest, the number of prior charges, and several other predictors thought
to be related to sentence length, men on the average receive substantially
longer sentences. One has results consistent with gender discrimination even
if evidence is a this point not very compelling. The weak results apply to
all o↵enders whose sentences are subject to the very same criminal justice
processes.

Likewise, o↵enders with a violent criminal history have sentences that are
on the average 4.64 year longer. For each additional year of age at which an
o↵ender’s first arrest as an adult occurred, sentence length is on the average
about .20 years shorter. A first arrest at 15 compared to a first arrest at
20 is associated with an average sentence that is about a year shorter. Such
associations are being estimated in a nearly unbiased manner for a sample
of 500, but they are estimates for the linear approximation, not the true
response surface.

In short, the regression coe�cients have much in common with partial
correlation coe�cients.21 Each is a measure of association adjusted for cor-
relations with the other predictors included in the working regression model.
Because the original units of the response and the predictors are retained,
the size of the association can be given a grounded interpretation.

A few regression diagnostics were examined. Perhaps most important
were the variance inflation factors associated with each predictor. One might
wonder if dependence between predictors was diluting estimation precision.
The variance inflation factors were all relatively small. Most of the variances
for the estimated regression coe�cients were less than twice the size they
would have been had all of the predictors been uncorrelated with one another.
For these kinds of data, that is a good result.

Also examined were simple transformations of several predictors to con-
sider nonlinear relationships. For example, the variable “Age” was replaced
the the square of “Age.” None of these transformations changed the results
in important ways. To confirm these conclusions, the working model was
re-estimated within a generalized additive formulation. All numerical pre-

or “influence,” which can be read as implying causality.
21The partial correlation is not used much any more despite have an impressive pedigree

(Fisher, 1924). It is just the usual Pearson correlation, but between two variables from
which any linear dependence with other specified variables has been removed, much as in
multiple regression.
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dictors were smoothed. The quality of the fit improved a bit, but the overall
results were much the same. There were for these predictors apparently no
strong nonlinear relationships overlooked.22

6 Discussion

For the practitioner, the computational changes associated with our best
approximation approach are easily made. One can run the usual regression
software and then compute sandwich or nonparametric bootstrap standard
errors. Proper statistical tests and confidence intervals can then follow as
usual.

A far more challenging matter is how to think about the underlying as-
sumptions. There are no longer the first or second order conditions required
by conventional regression. According to those rules, the working regression
model is misspecified. The only requirement is that the data are generated as
independent realizations from a substantively appropriate population. The
real world must have provided the data by the equivalent of random sam-
pling. Such a claim will rest on substantive considerations and will typically
be a matter of degree.

There is still a model of the data generation process, but one that we have
called “assumption lean” (Buja et al., 2016). Conventional regression requires
a very similar conception for the regression disturbances but in addition,
requires that the mean function specified is the mean function used by nature.
We have called the conventional regression formulation “assumption-laden”
(Buja et al., 2016).

Some readers may long for a regression approach that is totally model
free. If one is satisfied using regression solely to describe interesting features
of the data on hand, there is no need for a generative model accounting for
how the data can to be. And rich description is surely a worthy scientific and
policy goal. But if one wishes to draw inferences beyond the data on hand,
there must be a good answer to the question: inferences to what? Without a
credible answer, estimates from the data are a statistical bridge to nowhere.

22One might wonder why the generalized additive model was not used instead of linear
regression. The generalized additive model is an inductive procedure that adapts em-
pirically to the data through a tuning parameter. This constitutes model selection that
introduces significant complications for all statistical inference (Berk 2016, Chapter 2). A
discussion of these issues is well beyond the scope of this paper.
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Moreover, there must be a good answer to a second question: how close
to probability sampling are the means by which the data were generated?
Unless a credible case can be made that the correspondence is reasonably
close, there is no way to build a statistical bridge to begin with.

In practice, answers to both questions are necessarily derived from subject-
matter knowledge and will be matters of degree. There is no room for “as-
sume and proceed” statistics nor for “point-and-click” statistical analyses.
Technical expertise must be combined with substantive judgement.

7 Implications for Practice

The “wrong model” perspective has important implications for practice.
These have been introduced earlier paper. We now provide them summary
form.

1. We have given criminologists a formal rationale for the common prac-
tice of not taking specified models literally. It can be far more sensible
to explicitly and correctly make use of misspecified regression models
than to proceed as if misspecified models can be properly interpreted
as if they were specified correctly. Our approach is internally consistent
and honest. The conventional approach is neither.

2. Under conventional regression formulations, data are generated by na-
ture using a linear expression with several additional assumptions. Un-
der the wrong model perspective, the data are generated independently
and randomly from a joint probability distribution. Neither formula-
tion is required if the goal is description of the data on hand. But if
inferences are to be drawn beyond the data, those inferences have to be
drawn to something. In sample surveys, inferences are typically made
to a well defined, finite population. We provide a mathematical ab-
straction of that basic idea. Our approach is “assumption lean.” The
conventional approach is “assumption laden.”

3. For conventional regression, the estimation target is the function by
which nature actually generated the data – the “true model.” For our
approach, the estimation target is an acknowledge parametric approx-
imation of the true model. The approximation is “best” when it is the
product of ordinary least squares.
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4. With a wrong regression model specified, one can proceed as usual
with one’s software of choice to obtain estimates of regression coe�-
cients. Regression coe�cients retain their usual descriptive interpre-
tation: how much the mean of the response di↵ers depending on a
one unit of variation in a given predictor with the linear dependence
between that predictor on all other predictors removed (i.e., with all
other predictors “held constant”). When the estimation target is the
truth, regression coe�cient estimates will almost certainly be biased,
even asymptotically. When the estimation target is the approxima-
tion, regression coe�cient estimates will be asymptotically unbiased.
If the number of observations is substantially larger than the number
of predictors, the biases in a given sample will be small.

5. If the estimation target is the true model, estimated standard errors
will be biased, even asymptotically. It follows that statistical tests and
confidence intervals will not perform as they should and any inferential
conclusions could be seriously in error. One may be rejecting a null
hypothesis when one should not, or one may be failing to reject a null
hypothesis when one should. Confidence intervals will not have their
advertised coverage. If the estimation target is the approximation,
one cannot use the usual standard error estimates routinely provided
by popular software. One needs to employ either the nonparametric
bootstrap or the “sandwich” estimator. Both are readily available in
standard regression packages. Then, standard errors, statistical tests,
and confidence intervals will be asymptotically correct.

6. With conventional regression, causal inference is often a central goal.
Causal inferences can be very misleading with a misspecified regression
model. Under the wrong model approach, causal inference is not an
option. Causal interpretations may be useful, but one does not have
estimates of causal e↵ects. For example, one can choose to interpret an
o↵ender’s prior record as a cause of sentence length, but not take the
value of the associated regression coe�cients as an estimate of its causal
e↵ect. One might say that a regression coe�cient in the expected di-
rection is consistent with a causal impact, but not say how much the
expected sentence length would change if the number of prior convic-
tions was altered to be one more or one less. One is working with a
regression summary statistic much like a partial correlation coe�cient,
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but not in standardized units.

7. Under either the right model or wrong model formulation, casual in-
ference is almost certainly problematic. A far better approach, when
practical, is to implement a randomized experiment or a strong quasi-
experiment. Sometimes instructive natural experiments are available.23

8. Working within the wrong model perspective means that model mis-
specification is not longer relevant. Some working models will be more
instructive, complete or interesting than others, but they are all treated
as wrong. Regression diagnostics can help researchers find better mis-
specified models, but not a model that is demonstrably correctly spec-
ified.24

These implications for practice go more to how one thinks about regres-
sion analysis than to its mechanics. Required is a foundational attitude
adjustment. We are not advocating another technical elaboration on top of
usual practice.

8 Summary and Conclusions

Telling criticisms of linear regression are old news, and there has yet to be an
e↵ective rebuttal. At least implicitly, many researchers seem to understand
the situation. They will readily acknowledge that their working models are
only approximations of the true relationships. However, they still proceed
with all of the formal trappings of conventional regression that by and large
no longer apply. This can lead to all manner of unnecessary labor, incorrect
statistical inference, and misleading interpretations of results.

In this paper, we provide a more permissive approach allowing one prop-
erly to work with misspecified regression models. But the newfound freedom
comes at a price. One must acknowledge that the estimation target is an
approximation of the truth from which causal inference are very di�cult to
justify. Causal interpretations of the estimated associations can be in play,

23In a natural experiment, nature provides a good approximation of a randomized ex-
periment or quasi-experiment.

24There are a number of subtle issues when using of regression diagnostics with explicitly
misspecified models that are beyond the scope of this paper. But generally, visual and
graphical tools can be properly employed. Formal tests are likely to be problematic.
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but the estimates are not conventional ATEs. The coe�cients do not convey
what will happen if a given predictor is manipulated.

Some readers will argue that the price is too high. But in fact, there is
rarely any price to be paid. It is very di�cult to find regression models in
criminology, or in the social sciences more generally, for which a strong case
for proper specification can be made (Berk, 2003; Angrist and Pischke, 2008;
Freedman, 2009). Misspecified models are ubiquitous. If credible estimates
of causal e↵ects are an essential feature of an analysis, the best option is to
undertake a randomized experiment or a very strong quasi-experiment.
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